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is used to analyze the solidification process. Radiative information is computed using the finite volume
method. Over a range of temperatures, a distinct liquid-, mushy- and solid-zones are considered. Cases
of both Dirichlet and Neumann boundary conditions are taken up. Liquid fraction and temperature
distributions in the medium are analyzed for the effects of the extinction coefficient, the scattering
albedo, the conduction-radiation parameter and the latent heat.
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1. Introduction

Mathematical modeling of phase change of semitransparent
materials is an important field of research. It has relevance in var-
ious engineering applications such as films used in solar energy,
crystal growth, alloy processing, nuclear engineering and laser ma-
terial processing [1–15]. Semitransparent materials such as oxides,
fluorides and silicon find applications as single- and poly-crystals,
glasses, ceramics, composites, etc. [16–21].

One of the early numerical studies of melting and solidification
has been reported by Co and Sunderland [1]. Habib [2] consid-
ered solidification of semitransparent materials. In his study, he
considered the effects of conduction and radiation. Abrams and
Viskanta [3] considered effects of radiative heat transfer in melting
and solidification of semitransparent crystals. Effects of scattering
on melting and solidification of a semi-infinite semitransparent
medium was taken into account by Oruma et al. [4]. Morpholog-
ical stability during directional solidification due to radiative heat
transfer was analyzed by Yuferev et al. [5]. Shu et al. [6] studied
effects of internal radiation and solidification in semitransparent
melts in the presence of magnetic fields.

In the presence of volumetric radiation, solidifications of 1-D
planar and 2-D square geometries were analyzed by Raj et al. [7]
and Mishra et al. [8]. In [7,8], the lattice Boltzmann method (LBM)
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[22–30] was used to analyze the solidification process. The discrete
transfer method was applied to compute radiation information in
case of a 1-D planar medium in [7]. In [8], in case of a 2-D square
geometry, the finite volume method (FVM) was used to compute
the radiative information.

Chatterjee and Chakraborty [9–11] have formulated an enthalpy
based lattice Boltzmann model for the simulation of melting of
a 3-D cubical medium. De Fabritiis et al. [13] and Miller et al.
[14] are the proponents who used the LBM formulation to analyze
phase-change problems. However, the analyses presented in [9–14]
were limited to materials which did not require consideration of
volumetric radiation.

From the literature review it has been found that none of the
studies reported so far has analyzed solidification of a 3-D semi-
transparent medium considering effects of volumetric radiation.
The present work, therefore, is aimed at the analysis of solidifi-
cation of a 3-D absorbing, emitting and scattering semitransparent
medium involving radiation. An enthalpy based formulation in the
LBM [22–30] is employed to simulate the solidification process.
Solidification is assumed to take place over a range of temper-
atures, and accordingly distinct liquid-, mushy- and solid-zones
are considered. The FVM [31,32] is used to compute the radia-
tive information. Analyses are done considering both Dirichlet and
Neumann boundary conditions. The liquid fraction and tempera-
ture profiles in the medium are analyzed for the effects of various
parameters such as the extinction coefficient, the scattering albedo,
the conduction-radiation parameter and the latent heat.
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Nomenclature

A area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

b number of directions in a lattice
cP specific heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kJ/kg K
C heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kJ/m3 K
�ei propagation velocity in the direction i in the

lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
fl volume phase fraction of the liquid phase
G incident radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

H total enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kJ/kg
I intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

k thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . W/m K
L latent heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kJ/kg
M total number of rays/intensities
N conduction-radiation parameter
ni particle distribution function in the i-direction . . . . K
n(0)

i equilibrium particle distribution function in the
i-direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

qR radiative heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

�r lattice node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
S radiative source term . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
V volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

wi weight factor corresponding to the direction i in a lat-
tice

X, Y , Z x-, y- and z-dimensions of the geometry . . . . . . . . . . m
x, y, z coordinate directions

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2/s
β extinction coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m−1

ε emissivity
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

θ polar angle
φ azimuthal angle
σ Stefan–Boltzmann constant
τ relaxation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

Ω elemental solid angle
ω scattering albedo
Φ source term which affects the distribution function ni ,

Eq. (24)

Subscript

b boundary
E, W , N, S, F , B east, west, north, south, front and back
i lattice direction index
0 initial temperature
l liquid phase
f freezing
P cell center
s solid phase

Superscript

0 equilibrium
m direction index
2. Formulation

Solidification of a 3-D cubical (Fig. 1a) semi-transparent ab-
sorbing, emitting and scattering medium is considered. Initially
at time t = 0, the liquid pool is at temperature T0. The freezing
temperature of the material is T f which is lower than the ini-
tial temperature T0. For time t > 0, the north boundary and south
boundary are maintained at temperatures T N and T S , respectively.
These temperatures are below its freezing temperature T f . The
remaining four boundaries are maintained at the initial tempera-
ture T0. Since temperatures of the north and south boundaries are
lower than the freezing temperature of the material, the solidifica-
tion starts from these boundaries. Prior to solidification, a mushy
zone appears within the material. For the material under consid-
eration, solidification is considered over a range of temperatures.
Since the material is semitransparent, thermal radiation pervades
the material and its consideration becomes paramount in the en-
ergy equation.

For the problem under consideration, energy equation with vol-
umetric radiation in terms of total enthalpy can be written as

∂(ρH)

∂t
= ∇ · (k∇T ) − ∇ · �qR (1)

where ρ is the density, H is the total enthalpy, k is the thermal
conductivity, T is the temperature and �qR is the radiative heat flux.

In Eq. (1), the total enthalpy H consists of two parts i.e. sensible
enthalpy cP T and latent enthalpy fl L. cP is the specific heat at
constant pressure, fl is the liquid fraction and L is the latent heat
of fusion. Different zones, viz. solid-, liquid- and mushy-zones are
identified with the values of the liquid fraction fl . For liquid-zone,
fl = 1. If fl = 0, then it is a solid-zone and for the mushy-zone,
0 < fl < 1. Using the definition of the total enthalpy H = cP T + fl L,
the energy equation is written as

∂(ρcP T )

∂t
= ∇ · (k∇T ) − L

∂(ρ fl)

∂t
− ∇ · �qR (2)

If ρ, cP and k are assumed constant over a particular zone and also
independent of time, Eq. (2) for a specific zone (solid-, mushy- and
liquid) can be written as

∂T

∂t
= α∇2T − L

C

∂(ρ fl)

∂t
− 1

C
∇ · �qR (3)

where α = k/ρcP is the thermal diffusivity and C = ρcP is the
heat capacity. In the solid-, mushy- and liquid-zones, the liquid
fraction fl and enthalpy are related as

fl =
⎧⎨
⎩

0, H < Hs
H−Hs
Hl−Hs

, Hs � H � Hl

1, H > Hl

(4)

In Eq. (4), subscripts s and l stand for solid- and liquid-zones, re-
spectively. The enthalpy based energy equation (3) can be solved
by any of the conventional CFD tools, such as the FVM.

Recently solidification problems have also been analyzed by the
LBM [7–9,11,12,26]. Jiaung et al. [26], Raj et al. [7], Mishra et al.
[8] and Chatterjee and Chakraborty [9,11,12] have used the LBM
to analyze phase change problems. Like fluid dynamics, use of the
LBM is also gaining momentum in solving heat transfer problems
[7,8,11–14,26–30]. Proponents [13,14,22–25] of the LBM claim that
this method has the potential to be a robust CFD platform. In the
present work, therefore, we analyze the 3-D solidification problem
using the LBM.

The FVM for computation of radiative information is a robust
method [31,32]. Because of its construction, the method is fully
conservative. In [30], compatibility of the LBM and FVM for solving
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conduction-radiation problems in 1-D and 2-D Cartesian geome-
tries has been demonstrated. In the present work, therefore, the
solidification problem which is analyzed by the LBM, the radiative
information is computed using the FVM.

In the following sections, first we describe a brief formulation
of FVM to compute the radiative heat flux ∇ · �qR followed by the
LBM formulation to simulate the phase transition process.

2.1. Finite Volume Method (FVM)

The radiative transfer equation in any discrete direction ŝm =
(sin θm cosφm)î + (sin θm sinφm) ĵ + (cos θm)k̂ with direction index
m is given by [31,32]

dIm

dsm
= −β Im + Sm (5)

where I is the intensity and β is the extinction coefficient. The
source term S for an absorbing, emitting and isotropically scatter-
ing medium is given by

S = β(1 − ω)

(
σ T 4

π

)
+ βω

4π
G (6)

where ω = σs/β is the scattering albedo.
Resolving Eq. (5) along the x-, y- and z-coordinate directions

and integrating it over the elemental solid-angle 
Ωm , we get

∂ Im

∂x
Dm

x + ∂ Im

∂ y
Dm

y + ∂ Im

∂z
Dm

z = −β Im
Ωm + Sm
Ωm (7)

If n̂ is the outward normal to a surface, then Dm is given by

Dm =
∫


Ωm

(
n̂ · ŝm)

dΩ (8)

When the outward normal n̂ is pointing towards one of the posi-
tive coordinate directions, Dm

x , Dm
y and Dm

z are given by [29]

Dm
x = cosφm sin

(

φm

2

)[

θm − cos 2θm sin(
θm)

]
(9)

Dm
y = sin φm sin

(

φm

2

)[

θm − cos 2θm sin(
θm)

]
(10)

Dm
z = sin θm cos θm sin(
θm)
φm (11)

For n̂ pointing towards the negative coordinate directions, signs of
Dm

x , Dm
y and Dm

z are opposite to what are obtained from Eqs. (9)–
(11). In Eq. (7), 
Ωm is given by


Ωm = 2 sin θm sin

(

θm

2

)

φm (12)

Integrating Eq. (7) over a 3-D control volume, we get

[
Im

E − Im
W

]
Ax Dm

x + [
Im

N − Im
S

]
A y Dm

y + [
Im

F − Im
B

]
Az Dm

z

= [−βV Im
P + V Sm

P

]

Ωm (13)

where Ax , A y and Az are the areas of the x-, y- and z-faces of
the 3-D control volume, respectively (Fig. 1a). In Eq. (13), I with
suffixes E , W , N , S , F and B designate east, west, north, south,
front and back control surface average intensities, respectively. On
the right-hand side of Eq. (13), V = dx × dy × dz is the volume
of the cell and Im

P and Sm
P are the volume averaged intensity and

source term at the cell center P , respectively.
In any discrete direction having index m, the two cell-surface

intensities and the cell-center intensity Im
P can be related as

Im
P = Im

E + Im
W = Im

N + Im
S = Im

F + Im
B (14)
2 2 2
While marching from the first quadrant of a 3-D enclosure for
which Dm

x , Dm
y and Dm

z are all positive, from Eqs. (13) and (14),
Im

P in terms of known Im
W , Im

S , Im
F and Sm

P is written as

Im
P = 2Dm

x Ax Im
W + 2Dm

y A y Im
S + 2Dm

z Az Im
F + (V 
Ωm)Sm

P

2Dm
x Ax + 2Dm

y A y + 2Dm
z Az + βV 
Ωm

(15)

Similar equations can be derived for the situation when marching
from other quadrants in which case either or both of Dm

x , Dm
y and

Dm
z are negative.

In Eq. (6), incident radiation G is numerically computed from
the following [29]

G ≈
Mφ∑
k=1

Mθ∑
l=1

Im(
θm

l , φm
k

)
2 sin θm

l sin

(

θ

2

)

φ (16)

where Mθ and Mφ are the number of discrete points considered
over the complete span of the polar angle (0 � θ � π) and az-
imuthal angle (0 � φ � 2π), respectively. Therefore, Mθ × Mφ con-
stitute the number of discrete directions in which intensities are
considered at any point.

The radiative heat fluxes in three coordinate directions are cal-
culated from the following equations:

qR,x ≈
Mφ∑
k=1

Mθ∑
l=1

Im(
θm

l , φm
k

)[
cosφm

k sin

(

φm

2

)

× (

θ − cos 2θm

l sin(
θ)
)]

(17a)

qR,y ≈
Mφ∑
k=1

Mθ∑
l=1

Im(
θm

l , φm
k

)[
sin φm

k sin

(

φm

2

)

× (

θ − cos 2θm

l sin(
θ)
)]

(17b)

qR,z ≈
Mφ∑
k=1

Mθ∑
l=1

Im(
θm

l , φm
k

)
cos θm

l sin
(
θm

l

)
sin(
θ)
φ (17c)

While marching from any of the corners, evaluation of Eq. (15)
requires knowledge of the boundary intensity. For a diffuse-gray
boundary having temperature Tb and emissivity εb , the boundary
intensity Ib is computed from

Ib = εbσ T 4
b

π
+

(
1 − εb

π

) ∫

n̂·ŝm<0

I(θ,φ)
(
n̂ · ŝm)

dΩ (18)

Once the intensity distributions are known, radiative information
∇ · �qR required for the energy equation is computed from

∇ · �qR = β(1 − ω)

(
4π

σ T 4

π
− G

)
(19)

2.2. Lattice Boltzmann Method (LBM)

The discrete Boltzmann equation with Bhatnagar–Gross–Krook
(BGK) approximation is given by [25]

∂ f i(�r, t)

∂t
+ �ei · ∇ f i(�r, t) = − 1

τ

[
f i(�r, t) − f (0)

i (�r, t)
]

i = 0,1,2, . . . ,b (20)

where f i is particle distribution function at the lattice node �r, ei

is propagation speed in the particular direction i, τ is the relax-
ation time, f (0)

i is the equilibrium distribution function and b is
the number of directions through which information propagates.
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(a)

(b)

Fig. 1. (a) Arrangement of lattices and control volumes in a 3-D Cartesian geometry. (b) D3Q15 lattice in a 3-D geometry.
The relaxation time τ for the D3Q15 lattices (Fig. 1b) is given
by

τ = 3α

|�ei|2 + 
t

2
(21)

where α is thermal diffusivity and 
t is time step.
For the D3Q15 lattice, the propagation speed �e and correspond-

ing weights wi are given by

e0 = (0,0,0)

e1,2 = (±1,0,0) · U

e3,4 = (0,±1,0) · U

e5,6 = (0,0,±1) · U

e7,...,14 = (±1,±1,±1) · U (22a)

w0 = 2

9
, w1,...,6 = 1

9
, w7,...,14 = 1

72
(22b)

where with uniform lattices, U = 
x/
t = 
y/
t = 
z/
t . It is
to be noted that the weights satisfy the relation

∑b
i=1 wi = 1.

After discretizing Eq. (20) and considering the phase change in
the presence of volumetric radiation, Eq. (20) gets modified to

f i(�r + �ei
t, t + 
t) = f i(�r, t) − 
t

τ

[
f i(�r, t) − f (0)

i (�r, t)
]

− 
t wiΦi −
(


t

C

)
wi∇ · �qR (23)
where

Φi = Lρ

C

[
fl(�r, t + 
t) − fl(�r, t)


t

]
(24)

It is to be noted that the relaxation time τ , the density ρ and the
heat capacity C are different for different zones. With f i known,
temperature is obtained after summing f i over all directions.

T (�r, t) =
b∑

i=0

f i(�r, t) (25)

To process Eq. (23), an equilibrium distribution function is required
which is given by

f (0)
i (�r, t) = wi T (�r, t) (26)

Eq. (23) is the desired equation to be used in the LBM that gives
the same solution as that given by the energy equation (3).

3. Results and discussion

The following two cases have been considered:

• Solidification of a 3-D semitransparent medium with all
boundaries at specified temperatures: Initially the 3-D cubical
semitransparent participating medium (Fig. 1a) is at temper-
ature T0 and for time t > 0, its south and north boundaries
are maintained at constant temperature T S = T N < T f . The
remaining four boundaries are at initial temperature T0 > T f .
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• Solidification of a 3-D semitransparent medium with one of
its boundaries at constant heat flux: Initially the 3-D cubi-
cal semitransparent participating medium (Fig. 1a) is initially
at temperature T0. At time t > 0, the constant heat flux qT ,S

is extracted from the south boundary. The north boundary is
kept at constant temperature T N < T f . All other four bound-
aries are maintained at initial temperature T0 > T f .

The computer code for the present 3-D solidification prob-
lem has been validated against the results given in [33]. In [33],
conduction-radiation problem in a 3-D cubical enclosure has been
considered without any phase change. The FVM has been used
to compute radiative information and also to solve the energy
equation. In Fig. 2, with β = 1.0 and ω = 0.0, for conduction-
radiation parameter N = 1.0, 0.1 and 0.01, along z/Z direction at
x/X = 0.5 and y/Y = 0.5 the centreline non-dimensional temper-
ature θ = T /T0 have been compared. Results of the present work
have been compared with those given in [33]. A very good agree-
ment is observed.

For a cubical medium undergoing solidification, grid indepen-
dence results are shown in Figs. 3a and 3b. With 4 × 8 rays,
 Fig. 2. Comparison of results of the present work with those of Talukdar et al. [33].
(a) (b)

(c) (d)

Fig. 3. Grid- and ray-independency tests: effects of number of lattices/control volumes on centre line (a) liquid fraction, (b) temperature distribution for 4 × 8 rays; Effects of
number of rays on centerline (c) liquid fraction, (d) temperature distribution for 41 × 41 lattices/control volumes.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Transient value of centre line (x/X = 0.5, y/Y = 0.5, z/Z ) liquid fraction and temperature variations of the cubical enclosure for β = 1.0, N = 0.1, L = 1.0 and (a), (b)
ω = 0.0, (c), (d) ω = 0.5, and (e), (f) ω = 0.9.
Figs. 3a and 3b respectively show centreline liquid fraction fl
and temperature θ = T /T0 along z/Z direction at x/X = 0.5 and
y/Y = 0.5 of the cubical medium for 21 × 21 × 21, 31 × 31 × 31
and 41 × 41 × 41 lattices/control volumes. It is seen from Figs.
3a and 3b that the results of fl have a slight variation in the
mushy zone and the centreline temperature θ profiles are inde-
pendent of the lattices/control volumes. It is found that 41 × 41 ×
41 lattices/control volumes are optimum since there is no sig-
nificant improvement even for 41 × 41 × 41 lattices/control vol-
umes.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Transient value of centre line (x/X = 0.5, y/Y = 0.5, z/Z ) liquid fraction and temperature variations of the cubical enclosure for β = 1.0, ω = 0.5, L = 1.0 and (a), (b)
N = 0.01, (c), (d) N = 0.1, and (e), (f) N = 1.0.
With 41 × 41 × 41 lattices/control volumes, effects of different
number of rays on centerline (x/X = 0.5, y/Y = 0.5) liquid fraction
fl and the temperature θ distributions along z/Z are shown in
Figs. 3c and 3d, respectively. No significance change is observed in
fl and θ distributions beyond 4 × 8 rays.
For the problem under consideration, all results are, therefore,
presented for 41 × 41 × 41 lattices/control volumes and 4 × 8 rays.

In present study, material properties considered are those given
in [1,8]. The ratio of the thermal conductivity of materials in
liquid-zone and solid-zone is kl/ks = 0.6, mushy-zone to solid-zone
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Transient value of centre line (x/X = 0.5, y/Y = 0.5, z/Z ) liquid fraction and temperature variations of the cubical enclosure for ω = 0.5, N = 0.1, L = 1.0 and (a), (b)

β = 0.1, (c), (d) β = 1.0, and (e), (f) β = 3.0.
is kmz/ks = 0.76, the ratio of heat capacity of liquid-zone to solid-
zone is Cl/Cs = 1.2 and mushy-zone to solid-zone is Cmz/Cs =
1.12. The numerical values of thermal diffusivity α for the three
regions are calculated from the knowledge of the above ratios. The
temperatures θ = T /T0 at the solid-mushy and mushy-liquid inter-
faces were set at 0.6 and 0.8, respectively.
Case 1. Solidification of a 3-D semitransparent medium with all
boundaries at specified temperatures.

Effects of the scattering albedo ω on liquid fraction fl and tem-
perature θ distributions along the centreline (x/X = 0.5, y/Y =
0.5, z/Z ) are shown in Figs. 4a–4f. These results are given for the
extinction coefficient β = 1.0, the conduction radiation parameter
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Transient value of centre line (x/X = 0.5, y/Y = 0.5, z/Z ) liquid fraction and temperature variations of the cubical enclosure for β = 1.0, N = 0.1, ω = 0.5 and (a), (b)
L = 1.0, (c), (d) L = 10.0, and (e), (f) L = 100.0.
N = 0.1 and the latent heat L = 1.0. For every value of ω, results
are shown at 4 different time levels. In Figs. 4a and 4b, results are
given for an absorbing-emitting medium ω = 0.0. It is seen from
Fig. 4a that with time t , the mushy zone thickness increases. With
ω = 0.0, radiation effect is more (Eq. (19)), thus in Fig. 4b, temper-
ature gradient is more. For an absorbing, emitting and isotropically
scattering medium with ω = 0.5 and 0.9, fl and θ profiles at dif-
ferent times are shown in Figs. 4c–4f, respectively. From Figs. 4a,
4c and 4e, it is observed that with increase in ω, thickness of the
mushy-zone increases and from Figs. 4b, 4d and 4f, it is seen that
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Fig. 8. Liquid fraction fl contours at time (a) t = 0.1 s, (b) t = 1.0 s, (c) t = 2.0 s, (d) t = 5.0 s for β = 1.0, ω = 0.5, N = 0.1, L = 1.0.
temperature gradient decreases. When ω = 0.9, along the center-
line (x/X = 0.5, y/Y = 0.5, z/Z ), at time t = 5.0 s, no liquid-zone
is observed. This is because of the fact that with increase in ω, the
medium scatters more energy (Eq. (19)), and thus it is able to hold
less radiation.

With β = 1.0, ω = 0.5 and L = 1.0, effects of conduction-
radiation parameter N on centerline (x/X = 0.5, y/Y = 0.5, z/Z )
liquid fraction fl and temperature θ distributions at different in-
stants t are shown in Figs. 5a–5f. In Figs. 5a and 5b, results are
given for N = 0.01. Here, thickness of the mushy-zone is less
(Fig. 5a) and high temperature gradients are observed (Fig. 5b).
N = 0.01 corresponds to radiation dominated case and thus the
movement of the phase-front is slow. For N = 0.1 and N = 1.0, the
liquid fraction fl profiles are shown in Figs. 5c and 5e, respectively.
For N = 0.1 and N = 1.0, the θ profiles are shown in Figs. 5d and
5f, respectively. The mushy zone thickness is more for higher val-
ues of N (conduction dominated situation) and its movement is
also fast. In the mushy zone, the temperature gradient is less in
the conduction dominated (N = 1.0) case. It is to be noted that in
the case of conduction dominated situation (N = 1.0), the fl and
θ profiles do not change as time progresses from for t = 1.0 s to
t = 5.0 s (Figs. 5e and 5f).

Effects of the extinction coefficient β on centerline (x/X = 0.5,
y/Y = 0.5, z/Z ) liquid fraction fl and temperature θ profiles at
different times are shown in Figs. 6a–6f. In this case, the other pa-
rameters are taken as ω = 0.0, N = 0.1 and L = 1.0. The liquid
fraction fl profiles are shown in Figs. 6a, 6c and 6e for β = 0.1,
β = 1.0 and β = 3.0, respectively. In case of a radiatively less par-
ticipating medium (β = 0.1), it is found that fl and θ profiles do
not change after t = 1.0 s. With increase in β , the mushy-zone
thickness is found to decrease. From Figs. 6b, 6d and 6f, it is ob-
served that θ profiles become steeper with increase in β . In case of
a radiatively more participating medium (higher values of β), the
mushy-zone thickness is less and temperature gradient is high. The
movement of phase-front is fast in case of a radiatively less partic-
ipating medium (β = 0.1). This is because, in this case, radiation
penetrates to a higher depth.

Effects of the latent heat L on centerline (x/X = 0.5, y/Y = 0.5,
z/Z ) liquid fraction fl and temperature θ distributions at different
times are shown in Fig. 7. These results are shown for β = 1.0,
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Fig. 9. Temperature θ contours at time (a) t = 0.1 s, (b) t = 1.0 s, (c) t = 2.0 s, (d) t = 5.0 s for β = 1.0, ω = 0.5, N = 0.1, L = 1.0.
ω = 0.0 and N = 0.1. For L = 1.0, in Figs. 7a and 7b, results are
shown for liquid fraction fl and temperature θ , respectively. For
L = 10.0 and L = 100.0, fl and θ profiles are given in Figs. 7c–7f.
For a higher values of L, the mushy-zone thickness decreases and
temperature gradient is steeper in the mushy-zone. This trend is
attributed to the fact that when L is large, a phase change from
liquid to solid requires more energy.

In Figs. 8a–8d, liquid fraction fl contours are shown for β = 1.0,
N = 0.1, ω = 0.5 and L = 1.0. At four different time t levels, these
contours are plotted in the y–z plane at x/X = 0.5. In Figs. 8a–8d,
liquid fraction fl contours are shown at time t = 0.1, 1.0, 2.0 and
5.0 s, respectively. The mushy-zone thickness is found to increase
with time. It is observed from Figs. 8a and 8b that in the early
stage, the mushy-zone grows at a faster rate but its movement
becomes slow at later stages (Figs. 8c and 8d).

For β = 1.0, N = 0.1, ω = 0.5 and L = 1.0, temperature θ con-
tours in the y–z plane at x/X = 0.5 are shown in Figs. 9a–9d at
four different time t levels. At an early stage (Fig. 9a, t = 0.1 s),
temperature of the medium is very high. Very close to the south
and the north boundaries, the temperature is less. In Fig. 9b, for at
t = 1.0 s, it is seen that near the south and the north boundaries,
temperature decrease is fast. As time elapses, temperature gradient
decreases (Figs. 9c and 9d). Since the south and the north bound-
aries are maintained at the same temperature, which is lower than
the freezing temperature T f , the solidification starts from these
boundaries and gives the symmetrical temperature profiles in the
y–z plane at x/X = 0.5.

Case 2. Solidification of a 3-D semitransparent medium with one
of its boundaries at constant heat flux.

Effects of heat flux qT ,S extraction from south boundary on
centerline (x/X = 0.5, y/Y = 0.5, z/Z ) liquid fraction fl and tem-
perature θ profiles are shown in Figs. 10a–10f. These results are
shown at four different time levels. For these results, parameters
are taken as β = 1.0, N = 0.1, ω = 0.5 and L = 1.0. For results in
Figs. 10a and 10b, qT ,S = 1.0. qT ,S = 2.0 and 3.0 have been taken
for results in Figs. 10c, 10d and 10e, 10f, respectively. It is observed
from Figs. 10a, 10c and 10e, it is observed that as time elapses,
thickness of the mushy-zone increases. It is further observed that
with increase in the value of the extracted heat flux qT ,S , the so-
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Fig. 10. Transient value of centre line (x/X = 0.5, y/Y = 0.5, z/Z ) liquid fraction fl and temperature θ profiles of the cubical enclosure for β = 1.0, N = 0.1, ω = 0.5, L = 1.0
and (a), (b) ΨT ,S = 1.0, (c), (d) ΨT ,S = 2.0, and (e), (f) ΨT ,S = 3.0.
lidification is more rapid. It is seen from Figs. 10b, 10d and 10f that
with increase in qT ,S , temperature θ gradient increases. For a given
value of qT ,S , with time, temperature θ gradient decreases. When
heat extraction is more, solidification becomes fast and thus at a
given instant, temperature variation in the medium will be more.
All computations in the present work were carried out with

t = 0.001. In every case, transience was observed for 5 s. Thus,
all the runs were taken for 5000 iterations. On a computer with
CPU (512 MB, 2.8 GHz with hyper threading), a typical run took
about 10 hours. For various cases, runs ranged from 10–12 hours.
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4. Conclusions

Solidification of a 3-D cubical semitransparent absorbing and
isotropically scattering medium was analyzed. An enthalpy based
formulation in the LBM was used to simulate the solidification
process. Radiative information was computed using the FVM. Dis-
tributions of liquid fraction and temperature were studied for the
effects of the extinction coefficient, the scattering albedo, the con-
duction radiation parameter and the latent heat. In radiation dom-
inated case (low value of the conduction-radiation parameter) and
a strongly participating medium situation (high value of the ex-
tinction coefficient), the thickness of the mushy zone was observed
to be less and its movement was slow. With increase in scattering
(high value of scattering albedo), the mushy zone thickness was
found to be more. A high value of the latent heat was found to
yield a thinner mushy zone. Increase in heat flux extraction from
the south boundary resulted in rapid solidification. With a thicker
mushy zone, temperature profiles in the medium were found to be
steeper.
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